Every living cell, even a single bacterial cell, can be thought of as a gigantic chemical factory. DNA patterns, or genes, exert their effects by influencing the course of events in the chemical factory, and they do this via their influence on the three-dimensional shape of protein molecules. The word gigantic may seem surprising for a cell, especially when you remember that 10 million bacterial cells could sit on the surface of a pin's head. But you will also remember that each of these cells is capable of holding the whole text of the New Testament and, moreover, it is gigantic when measured by the number of sophisticated machines that it contains. Each machine is a large protein molecule, put together under the influence of a particular stretch of DNA. Protein molecules called enzymes are machines in the sense that each one causes a particular chemical reaction to take place. Each kind of protein machine churns out its own particular chemical product. To do this it uses raw materials that are drifting around in the cell, being, very probably, the products of other protein machines. To get an idea of the size of these protein machines, each one is made of about 6,000 atoms, which is very large by molecular standards. There are about a million of these large pieces of apparatus in a cell, and there are more than 2,000 different kinds of them, each kind specialized to do a particular operation in the chemical factory - the cell. It is the characteristic chemical products of such enzymes that give a cell its individual shape and behaviour. **links** 4 Creating differences